
Accelerating Compact Convolutional Transformers
with FlashAttention and Triton Kernels

William Yang, Zijie Cai
University of Maryland

Abstract

With the rapid development of natural language processing, the Transformer archi-1

tecture has laid a strong foundation for not only large language models but also2

computer vision models. However, regular Transformers often require significant3

amounts of training data and parameters in order to perform well. This is not very4

suitable for small sets of data or domain-specific applications. For instances where5

data availability and compute resources are limited, a simpler Convolutional Neural6

Network (CNN) is usually preferred for vision tasks over Vision Transformer7

(VIT). This leads to the development of Compact Convolutional Transformers8

(CCT), which replace the traditional patch embedding block with a convolutional9

embedding and utilize sequence pooling instead of slicing to eliminate the need10

for positional embeddings and class tokens, allowing for better inductive bias and11

accuracy with more flexible input parameters over other variations. Currently,12

we are drawing our inspiration from the following repository from SHI-Labs [3].13

Still, these transformers incur significant memory and communication overhead.14

Our approach to further improve the efficiency and memory bottlenecks involves15

the following steps: 1. Benchmarking initial performance metrics 2. Identifying16

bottlenecks 3. Implement flash attention 4. Implement Triton kernel optimizations17

1 Introduction18

Convolutional neural networks (CNNs) have dominated the landscape of computer vision with19

remarkable performance. CNNs are effective for visual tasks because they manage spatial translations20

and incorporate strong biases inductively. They also utilize sparse interaction, weight-sharing,21

and equivariant representations of the model. Specifically, convolution and pooling layers provide22

translational equivariance and invariance, respectively, allowing these models to efficiently capture23

natural image statistics and achieve better sampling efficiency.24

Conversely, natural language processing (NLP) has been transformed by the introduction of the25

transformer architecture [5]. Crafted with NLP in mind, the transformer architecture has pervaded26

even into computer vision with the advent of vision transformer (ViT) [2]. Although ViT showed great27

success, transformers still lack some of the inductive biases inherent to CNNs, such as translation28

equivariance and locality, and therefore do not generalize well when trained on insufficient amounts29

of data. The modern shift to the data-hungry paradigm makes training transformers from scratch30

seem intractable for many types of pressing problems, where there is significantly less data available.31

The above concerns motivated the efforts for efficient models that can be effective in less data-32

intensive domains and allow for training on datasets that are orders of magnitude smaller than those33

conventionally seen in computer vision and NLP. Both Transformers and CNNs have highly desirable34

qualities for statistical inference and prediction, but each comes with its own costs. CCTs can both35

attend to important features within images while also being spatially invariant, where there are sparse36

interactions and weight sharing. They offer a hybrid design with convolutional embeddings, sequence37

pooling, and small data generalization. The backbone of the model is still transformer-based. The38

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

encoder consists of transformer blocks, each including an MHSA layer and an MLP block. The39

encoder also applies Layer Normalization, Gaussian Error Linear Unit (GeLU) activation, and dropout.40

Positional embeddings can be learnable or sinusoidal, both of which are effective. Sequence pooling41

(Seqpool) pools the entire sequence of tokens produced by the transformer encoder, replacing the42

conventional class token. Figure 1 shows the CCT architecture.43

Figure 1: CCT Architecture.

Even though CCT models have shown great promise in training with small datasets such as CIFAR-1044

and CIFAR-100, these models still suffer from classical bottlenecks such as multi-head attention and45

memory-intensive MLP layers. Our work aims to increase the efficiency of existing CCT models by46

introducing Flash-Attention [1] and fused, optimized Triton kernels.47

Flash-Attention is a memory-efficient mechanism that avoids explicit instantiation of attention48

matrices. Instead, it uses a tiling strategy that fuses the softmax computation with the attention value49

accumulation to reduce the memory footprint from quadratic to linear in terms of sequence lengths.50

Flash attention also accelerates computational efficiency by loading data into SRAM, a quicker form51

of memory in GPU architecture. By integrating the Flash-Attention module into the transformer block52

of the CCT encoder, we aim to reduce both memory usage and time for training without sacrificing53

classification accuracy.54

In addition, the MLP layers in the transformer are also a bottleneck with a heavy load of computation55

and memory overhead. These two layers typically consist of large matrix multiplications along56

with activation functions. This can slow down the training due to the separate function calls and57

intermediate memory access. To address this, we implement a Triton-based fused MLP pipeline with58

two kernels for each layer, which combines the operations of linear projection, bias accumulation,59

and GeLU activation into a single GPU kernel. This single fused kernel reduces unnecessary memory60

traffic and improve overall throughput.61

By combining the two strategies of Flash-Attention and Triton-based fused MLP kernels, it provides62

us a faster and more efficient CCT variant that is compatible with training and inference with even63

larger sequence lengths and batch sizes.64

2 Related Work65

2.1 Transformers in Vision66

Transformers were originally introduced for sequence modeling in natural language processing [5]67

and have shown great promise. Recently, the architectures have been adapted for vision tasks as well,68

with enormous success (e.g., ViT). Vision Transformers (ViT) [2] breaks down images into patches69

as tokens for the transformer encoder. While ViT achieves strong performance on large datasets and a70

diverse set of downstream vision tasks, it is not efficient on small datasets, as the transformer blocks71

are data-intensive. Several works have attempted to inject convolutional priors into the transformer72

models, such as CvT [7] and CCT [3]. CCT, in particular, is a hybrid approach combining CvT and73

ViT by replacing traditional patch embeddings with convolutional tokenizers and the class token with74

sequence pooling. These strategies make the model more robust when training with limited data,75

which is critical for domain-specific applications with constrained resources.76

2.2 Efficient Attention Mechanisms77

Traditional MHSA scales quadratically with input sequence length in both memory and computation.78

This is a significant bottleneck for long sequences or high-resolution images for vision tasks. To79

address this, several efficient attention mechanisms have been proposed, such as Linformer [6],80

which is an approximation attention method. More recent advances include Flash-Attention [1],81

2

which reformulates the attention computation as a single fused kernel using tiling blocks and is82

much more memory efficient without explicit notation of memory sharing for all attention matrices.83

Flash-Attention achieves linear memory complexity while maintaining numerical stability, which84

makes it a popular choice to plug into a transformer block for many models and provides robustness85

in training speed and memory usage.86

2.3 Triton Kernel Optimization87

Triton [4] is a compiler language designed for writing custom GPU kernels like CUDA kernels, but88

with a Python-like syntax which offers both high performance and user-friendly flexibility. It enables89

developers to write fused kernels that combine multiple PyTorch operations into a single pass to90

eliminate memory overhead and improve overall throughput. There have been many tutorials on91

using Triton to accelerate matrix multiplication and activation functions. In our work, we adopt Triton92

to fuse the two-layer feed-forward MLP layers into a single-stage pipeline, specifically for linear93

layers and GeLU activations together. This helps us reduce kernel launch overhead and redundant94

memory access, leading to better GPU utilization.95

3 Methodology96

3.1 Compact Convolutional Transformer Architecture97

Our work is based on the Compact Convolutional Transformer (CCT) proposed by Hassani et al. [3].98

The model architecture consists of three key components: a convolutional tokenizer, a transformer99

encoder, and a sequence pooling layer. The convolutional tokenizer replaces the standard patch100

embedding from ViT with multiple convolutional layers, which introduces low relational inductive101

bias and invariance to spatial translations. The transformer encoder consists of multi-head self-102

attention (MHSA) and a two-layer feed-forward MLP. These layers include a chain of operations103

like LayerNorm, dropout, and GeLU activation. Sequence pooling pools over the tokens from the104

transformer encoder, which allows the model to better utilize information across spatially sparse data.105

To better understand the performance of the baseline model variant and help us identify memory106

and attention bottlenecks, we profiled the training loop using torch.profiler. We recorded the107

CPU and CUDA kernel timings along with detailed memory usage by each function call for the108

first 20 iterations of model training on the Flowers-102 dataset. Profiling for baseline shows that109

the majority of CUDA time is concentrated in the convolutional kernel operation, and the MLP and110

attention blocks also showed significant usage of memory and CUDA time in both the forward and111

train_partial operations. We later apply the same profiling strategies to our fused model variants,112

showcasing specific improvements of our implementations.113

3.2 FlashAttention Integration114

In the baseline CCT model, the MHSA is implemented with PyTorch’s native attention function,115

which computes each step of the attention value matrix by explicitly storing all intermediate values116

for dot-product, softmax, etc. This process leads to a quadratic memory footprint in terms of117

sequence length, and the operations are sequentially separate function calls, which can slow down the118

performance due to limited memory bandwidth.119

To improve this, we replace the attention value computation in each transformer block with the120

FlashAttention [1] module, which provides a memory-efficient CUDA kernel that packs all operations121

of softmax and value aggregation together into a single function call. We install the module from the122

official Flash-Attention Python Library. This eliminates all intermediate attention matrix storing and123

reduces the memory complexity from O(n2) to O(n) with respect to sequence length while ensuring124

numerical stability. Our implementation involves adapting the transformer block to reshape the query,125

key, and value tensors to work with the fused Flash-Attention’s kernel’s input function definition. In126

a single fused pass, these tensors are passed through and output the final attention value. Compared127

to the baseline, this integration significantly reduces memory usage and latency during both training128

and inference, especially for long sequences or larger batch sizes.129

3

3.3 Triton Fused MLP Kernel Design130

In the baseline CCT implementation, the MLP block is executed using four separate layers in PyTorch:131

self.linear2(self.dropout1(self.activation(self.linear1(src))))132

Each operation corresponds to a separate function call, introducing unnecessary memory movement133

between global memory and registers, which results in higher latency and also more memory usage134

due to intermediate synchronization.135

To address this, we wrote a custom fused MLP module using Triton [4]. Our FusedMLP module136

uses two Triton kernels: the first kernel (linear_bias_gelu_kernel) performs a fused linear137

transformation, bias addition, and GeLU activation; the second kernel (linear_bias_kernel)138

performs the final linear projection and bias addition.139

The input tensor of shape (B, L, H) is reshaped into (B·L, H) for computation, where B is the140

batch size, L is the sequence length (number of tokens), and H is the hidden dimension. For our fused141

MLP module, stage 1 is the first kernel (Linear+bias+GeLU) that performs tiled matrix multiplication142

for the input tensor and weight tensor, then adds the bias and applies the GeLU activation, which143

we used its mathematical formula with tanh approximation. Dropout was applied using the original144

PyTorch dropout function. For stage 2, the previous result is projected back with the second kernel to145

the original hidden size and accumulates bias. Both kernels are parameterized by a tunable block size146

configuration, like with Triton’s Autotune function for optimized performance.147

Our approach significantly reduces memory traffic by avoiding redundant reads and writes, and148

reduces kernel launch overhead by using a fused kernel. Compared to the baseline, the fused MLP149

kernel results in less memory usage during training and therefore improves the model scalability.150

// Pseudocode for linear_bias_gelu_kernel (Triton)
for pid_m in M_blocks:

for pid_n in N_blocks:
acc = zeros(BLOCK_M, BLOCK_N)
for k0 in range(0, K, BLOCK_K):

x_tile = load(X, offsets=(pid_m, k0))
w_tile = load(W, offsets=(k0, pid_n))
acc += dot(x_tile, w_tile)

Bias
bias = load(B, pid_n)
y = acc + bias
GeLU
y = 0.5 * y * (1 + tanh(sqrt(2/pi) * (y + 0.044715 * y^3)))
store(Y, pid_m, pid_n, y)

Figure 2: Pseudocode illustration of the fused Linear+Bias+GeLU Triton kernel.

4 Experiments151

4.1 Setup152

We evaluate the impact of our optimizations on the Flowers-102 image classification dataset. One153

thing to note about our decision to use the Flowers-102 dataset is that we performed preliminary154

experiments on CIFAR-10 with the smallest CCT model architecture. Although we noticed a 46%155

improvement in GPU time and several orders of magnitude improvement in memory, we also observed156

a 36% decrease in model performance. Our initial assumption led us to believe that the training157

dataset and model were too simple to be paired with such optimizers, leading to our decision to use158

a more complex training dataset and model. Thus, due to its higher resolution and larger number159

of classes, Flowers-102 provides a more meaningful benchmark than CIFAR-10 when assessing160

architectural improvements. We test on the following variant of Compact Convolutional Transformers161

(CCT):162

• CCT-14/7x2_384: A wider and deeper configuration with 14 transformer layers, a 7×2163

tokenizer, and a hidden size of 384. This setting reveals more visible gains, compared to a164

4

lighter model such as CCT-7/3x_32, when applying Flash-Attention and Triton-based fused165

MLP due to longer sequences and higher token count.166

All models are trained for 100 epochs using the AdamW optimizer, a cosine annealing learning167

rate scheduler, and a batch size of 8. Unless stated otherwise, all training hyperparameters are kept168

identical across variants for fair comparison. Training and profiling are tested on a 1/7th partition of169

an NVIDIA A100-SXM4-40GB GPU. We use PyTorch with native AMP enabled. All custom Triton170

kernels and Flash-Attention modules are fully compatible with this setup.171

4.2 Evaluation Strategy172

We evaluate each model along three categories:173

• Accuracy: Measured as top-1 test set accuracy after full convergence (9̃0 epochs).174

• Latency: Measured as average CUDA execution time for the forward pass and partial175

training steps. We record 20 iterations using torch.profiler.176

• Memory usage: Peak GPU memory usage tracked via177

torch.cuda.max_memory_allocated() and verified through profiler traces.178

Each model is profiled for 20 training iterations. This provides us with a detailed metric of CUDA179

time and memory allocation for each function. We use this information to quantify the performance180

impact of our integration of Flash-Attention and fused MLPs.181

5 Results182

5.1 Accuracy vs Baseline183

Figure 3 shows the top-1 test accuracy of all four model variants. The baseline CCT achieves the184

highest accuracy on Flowers-102. Replacing the MLP with a fused Triton implementation introduces185

a small drop. Flash-Attention introduces a much larger accuracy gap. The combined model achieves186

the lowest accuracy at 68%, which is over 20% points lower than the baseline.187

We suspect that the accuracy drop may be due to: (1) the tanh-based approximation of GeLU used in188

our Triton kernel, which differs from PyTorch’s native implementation; and (2) precision mismatches189

introduced by AMP or fused kernel behavior. While not ideal for pure accuracy, these trade-offs190

provide significant improvements in speed and memory efficiency.191

Figure 3: Top-1 accuracy of model variants on Flowers-102.

5

5.2 Latency and Memory Benchmarks192

Table 1 shows average function latency across 20 iterations. Triton-MLP alone shows minimal193

improvement. The introduction of Flash-Attention, however, significantly reduces both forward and194

training time. The combined model achieves the lowest latency across both metrics.195

Table 1: Average latency (in milliseconds) over 20 iterations.

Model Variant Forward Train_Partial
CCT (Baseline) 253.3 5325.0
CCT-MLP (Triton) 252.5 5308.0
CCT-Flash (FA Only) 218.1 4568.0
CCT-Flash + MLP 217.1 4481.0

Table 2 shows peak memory usage. The baseline model uses the most memory due to intermediate196

storage and kernel overhead. Triton-MLP alone cuts memory usage moderately. Flash-Attention197

provides the largest reduction. When combined, the fused model yields a 4.2× drop in forward198

memory usage and nearly 2× reduction during the training step.199

Table 2: Peak GPU memory usage (in GB) during execution.

Model Variant Forward Train_Partial
CCT (Baseline) 47.20 0.301
CCT-MLP (Triton) 38.42 0.159
CCT-Flash (FA Only) 17.38 0.172
CCT-Flash + MLP 11.26 0.159

6 Discussion200

Our results show a clear trade-off: fusing operations improves runtime and memory usage but also201

hurts the accuracy. In terms of accuracy, there is a 29% decrease from the baseline results compared202

to CCT + Flash + MLP. Our suspicion for the decreased accuracy are twofold. One source of the203

issue could be the mixed precision parameter. Mixed precision aims to increase training efficiency204

by decreasing 32-bit floating-point calculations to 16-bit floating-point calculations, while incurring205

only a slight drop in accuracy. The baseline results do not use mixed precision; however, either AMP206

or the fused kernels introduced in either flash attention or the Triton kernels could implicitly utilize207

this technique. Secondly, the tanh-based approximation of GeLU used in our Triton kernel differs208

from the baseline PyTorch native implementation.209

The fused kernels minimize overhead and memory access, but numerical differences and mixed-210

precision artifacts may affect convergence. Specifically, we observed an 18% decrease in training211

time and a 300% decrease in memory usage with CCT + Flash + MLP compared to baseline. It seems212

that these gains mainly come from the use of flash attention due to optimized memory storage and213

the removal of intermediate tensors in the backward pass. There is only a slight decrease in training214

time, likely due to the already optimized nature of CCT, which are tiny in model size compared215

to state-of-the-art transformers. Overall, further investigation is required as we need to explore216

performance gains with even more combinations of model size and training data. For real-time217

inference or constrained deployments, these trade-offs could be acceptable.218

In future work, we plan to extend fusion to layer normalization, dropout, and backward passes. This219

would allow for a fully fused transformer block in both forward and backward training stages, further220

improving training time. We would also like to perform more studies to determine the source of the221

accuracy drop. Specifically, we would like to isolate the mixed precision parameter and the fixed222

GeLU implementation. Lastly, we would like to explore an even larger dataset, specifically ImageNet,223

which contains 14,000,000 images of 2848 x 42,000 pixel size.224

6

7 Conclusion225

In this work, we explored performance and memory optimizations for CCTs through the integration226

of Flash Attention and Triton-based fused MLP kernels. We aimed at enhancing the training and227

inference of longer sequences and high-resolution image data while preserving the efficiency and228

lightweight nature of CCT models. Flash attention reduced the memory footprint of multi-head229

self-attention by avoiding storage of intermediate tensors, while our custom Triton kernels fused230

the MLP layers into a single GPU pass to reduce memory traffic and kernel launch overhead. Our231

experimental results on the Flowers-102 dataset demonstrated gains in both latency and peak memory232

usage. However, we also observed a noticeable trade-off in accuracy, most likely due to the integration233

of flash attention. This decrease in accuracy suggests that further tuning and investigation are needed.234

Despite the trade-offs, this work showcases the practicality and impact of low-level GPU kernel235

fusion and efficient attention mechanisms in accelerating CVTs. Our findings encourage future236

work in combining architectural efficiency with numerical stability to unlock the full potential of237

transformer-based vision models in resource-constrained settings.238

References239

[1] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast240

and memory-efficient exact attention with io-awareness. In Advances in Neural Information241

Processing Systems, volume 35, pages 16144–16159, 2022.242

[2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,243

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,244

Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image245

recognition at scale. In International Conference on Learning Representations (ICLR), 2021.246

arXiv:2010.11929.247

[3] Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu Abuduweili, Jiachen Li, and Humphrey Shi.248

Escaping the big data paradigm with compact transformers. arXiv preprint arXiv:2104.05704,249

2021.250

[4] Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler251

for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International252

Workshop on Machine Learning and Programming Languages, MAPL 2019, page 10–19, New253

York, NY, USA, 2019. Association for Computing Machinery.254

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,255

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information256

processing systems, volume 30. Curran Associates, Inc., 2017.257

[6] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention258

with linear complexity, 2020.259

[7] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:260

Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF international261

conference on computer vision, pages 22–31, 2021.262

7

	Introduction
	Related Work
	Transformers in Vision
	Efficient Attention Mechanisms
	Triton Kernel Optimization

	Methodology
	Compact Convolutional Transformer Architecture
	FlashAttention Integration
	Triton Fused MLP Kernel Design

	Experiments
	Setup
	Evaluation Strategy

	Results
	Accuracy vs Baseline
	Latency and Memory Benchmarks

	Discussion
	Conclusion

