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Lensless cameras offer a promising alternative to conventional cameras
for real-life applications requiring device miniaturization, such as medical
imaging and surveillance. However, due to the modification, reconstruc-
tion algorithms are required to recover the sensor measurements, often
with many computational challenges. In this paper, we benchmark vari-
ous lensless imaging reconstruction algorithms on the DiffuserCam dataset,
which includes 25,000 image pairs of lensed and lensless measurements.
These algorithms include variants of two common optimization algorithms:
Gradient Descent (GD) and Alternating Direction Method of Multipliers
(ADMM), from iterative computational imaging approaches to deep learning
approaches. By exploring the trade-offs between the speed and quality of
these algorithms, we fine-tune a set of optimized hyperparameters for the
evaluated algorithms with the goal of enabling real-time on-device recon-
struction with minimal computational resources. In our study, we find that
Le-ADMM with U-Nets achieves the best overall performance quantitatively
and qualitatively while minimizing the computational resources needed. Our
results provide useful insights for balancing computational efficiency and
reconstruction fidelity for real-time lensless imaging applications.
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1 INTRODUCTION
Lensless cameras provide an exciting alternative to conventional
cameras by replacing traditional bulky lenses with more compact
light-modulating materials and reconstruction algorithms. This en-
ables the development of compact and cost-effective imaging sys-
tems for applications such as tiny robotics, medical imaging, and
surveillance, where size, weight, and cost constraints are critical.
Instead of capturing direct optical images, lensless imaging sys-
tems record encoded light patterns spread across the pixels onto
the sensor, which must then be reconstructed into focused images.
Lensless imaging reconstruction algorithms often pose several

challenges due to the complexity of encoded measurements and the
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computational resources required for high-quality reconstruction.
When designing reconstruction algorithms, it is critical to balance
reconstruction quality and computational efficiency—a trade-off that
varies depending on the algorithm used. Traditional optimization
methods, such as Gradient Descent (GD) and Alternating Direction
Method of Multipliers (ADMM), offer reliable solutions but are often
computationally intensive. Deep learning-based approaches provide
an alternative by introducing learned priors, which can enhance
speed and accuracy, though they demand substantial training and
computational resources.
This paper benchmarks popular reconstruction algorithms on

the DiffuserCam dataset, which includes 25,000 paired lensless and
lensed measurements. We evaluate the performance of iterative
optimization methods alongside hybrid techniques utilizing deep
learning priors, using metrics such as Peak Signal-to-Noise Ratio
(PSNR), Learned Perceptual Image Patch Similarity (LPIPS), and
processing time per file (in seconds).
Our analysis focuses on optimizing algorithmic performance to

achieve acceptable real-time on-device reconstruction with mini-
mal computational resources. The findings provide useful insights
into the trade-offs between reconstruction quality and efficiency,
advancing the development of practical lensless imaging systems
for real-world applications.

2 RELATED WORK
Lensless cameras have become a popular ongoing research field
with many recent advancements due to their potential for device
miniaturization. Early work by Antipa et al. [Antipa et al. 2018]
introduced the DiffuserCam, a lensless imaging system that uses a
diffuser mask to encode light patterns for computational reconstruc-
tion. In this case, the authors used scotch tape, which produced a
swimming pool surface-like pattern for the forward model of the
physics. This work demonstrated the feasibility of single-exposure
lensless imaging for 3D scene capture, laying the foundation for sub-
sequent advances in both hardware and reconstruction algorithms.
Traditional reconstruction methods for lensless imaging often

rely on iterative optimization techniques. Methods such as Gradi-
ent Descent (GD) and Alternating Direction Method of Multipliers
(ADMM) have been widely studied due to their mathematical sim-
plicity and stability, as they do not require training data. However,
these methods are computationally intensive and struggle to achieve
the speed required for real-time applications. They may also intro-
duce unwanted artifacts due to model mismatches or inaccuracies
in the physical system.

More recent research has focused on incorporating deep learning
into reconstruction pipelines to overcome these limitations. Khan
et al.[Khan et al. 2020] proposed FlatNet, which leverages learned
priors to improve reconstruction quality and achieve photorealistic
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results. Similarly, Monakhova et al.[Monakhova et al. 2019] demon-
strated that neural networks can significantly enhance the perfor-
mance of traditional optimization algorithms, such as Le-ADMM,
achieving a more balanced trade-off between traditional methods
and deep learning-based approaches by incorporating pre-trained
models to guide the reconstruction process.

In addition to advancements in reconstruction algorithms, light-
weight hardware platforms for lensless cameras have also been
developed. Bezzam et al. [Bezzam et al. 2023] introduced LenslessPi-
Cam, a hardware-software platform based on the Raspberry Pi,
which provides researchers with an accessible solution for real-time
computational imaging research. It offers tools to build, evaluate,
and test lensless cameras, as well as simulate and fabricate light-
modulating mask patterns. The platform also includes PyTorch-
accelerated reconstruction algorithms for faster processing times.
These advancements in both hardware and algorithms highlight the
growing potential for lensless imaging in practical applications.

While many of these works provide promising directions for im-
proving reconstruction quality or designing new hardware for better
efficiency, achieving real-time, on-device reconstruction remains
a challenge. Our study builds on previous work by benchmarking
existing popular reconstruction algorithms for lensless imaging on
the DiffuserCam dataset. We study the trade-offs between compu-
tational efficiency and reconstruction fidelity with the objective of
optimizing a pipeline on the Raspberry Pi for real-time, on-device
reconstruction, thereby opening up possibilities for real-world ap-
plications.

3 METHODOLOGY
We benchmark reconstruction algorithms across multiple dimen-
sions, including reconstruction quality, processing time, and suit-
ability for real-time applications.

3.1 Dataset
The DiffuserCam dataset [Antipa et al. 2018] is a dataset for lensless
imaging research collected with a lensless diffuser camera. The
dataset consists of 25,000 pairs of sensormeasurements from lensless
camera and ground truth images. Traditionally, the camera uses
stack of lenses to map each point in the scene to a particular sensor
pixel. In contrast, lensless camera like DiffuserCam maps each point
in the scene to different pixels in some particular patterns, which
can be described and visualized by a Point Spread Function (PSF).
The PSF of the DiffuserCam camera can be shown in Figure 1.

Since a point in the scene is mapped to many sensor pixels, as
shown in in Figure 1, the resulting sensor measurements of a lensless
camera do not show the true image in the scene. Some visualiza-
tions of raw DiffuserCam’s measurements and true images can be
shown in Figure 2. Therefore, we need a reconstruction algorithm
to accurately and efficiently reconstruct the true image from raw
sensor measurements. Specifically, a reconstruction algorithm takes
the blurry sensor measurements and reconstructs the true image
from such blurry measurements. The reconstruction pipeline dia-
gram is illustrated in Figure 3. In our study, we utilize this dataset
for training and evaluation of different reconstruction algorithms
described in Section 3.2.

Fig. 1. Point Spread Function (PSF) of DiffuserCam describing how a point
in the scene mapped to the sensor’s pixels. Unlike traditional cameras, the
lensless cameras’ PSF patterns are complex and non-Gaussian.

Fig. 2. Visualizations of True Images (left; targets) and lensless Camera’s
Sensor Measurements (right; inputs) of different images. The lensless mea-
surements are highly blurry without any important information, necessitat-
ing a reconstruction algorithm to recover the true image.
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Fig. 3. Diagram of reconstruction algorithm from the raw lensless measure-
ments. The diagram is taken from [Antipa et al. 2018].

3.2 Reconstruction Algorithms
We evaluate the following reconstruction methods:

• Gradient Descent (GD): Includes Vanilla GD, Nesterov GD,
and FISTA for improved convergence.

• ADMM Variants: Standard ADMM, Plug-and-Play ADMM
with deep priors (DRUNET), and Learned ADMM (Le-ADMM)
unrolled as neural networks.

Fig. 4. Model-based reconstruction architecture, illustrating the iterative
optimization process used in Gradient Descent and related algorithms [An-
tipa et al. 2018].

Color Notation:
Red is used to highlight learnable parameters or hyperparameters

(e.g., learning rates, momentum coefficients, penalty terms).
Blue is used to indicate pre-trained modules or external compo-

nents (e.g., denoisers like 𝐷 (·) or U-Net regularizers).
(1) Vanilla Gradient Descent (GD): Gradient Descent (GD)

iteratively minimizes the reconstruction loss:

𝐿(𝑥) = 1
2 ∥𝑏 − 𝐻𝑥 ∥22, (1)

where𝑏 is the observed sensor measurement,𝐻 is the forward
model, and 𝑥 is the reconstructed image. The update rule for
GD is:

𝑥𝑘+1 = 𝑥𝑘 + 𝜂𝐻𝑇 (𝑏 − 𝐻𝑥𝑘 ), (2)
where 𝜂 is the learning rate.

(2) GD-FISTA (Fast Iterative Shrinkage-Thresholding Algo-
rithm): GD-FISTA accelerates GD by introducing a momen-
tum term to improve convergence:

𝑦𝑘 = 𝑥𝑘 + 𝑡𝑘−1 − 1
𝑡𝑘

(𝑥𝑘 − 𝑥𝑘−1), (3)

𝑥𝑘+1 = prox𝜆𝑅 (𝑦𝑘 − 𝜂∇𝐿(𝑦𝑘 )), (4)

where 𝑡𝑘 controls momentum, prox is the proximal operator,
and 𝑅(𝑥) is a regularizer.

(3) Nesterov Accelerated Gradient Descent (GD-Nesterov):
Nesterov GD improves convergence stability using a looka-
head step:

𝑣𝑘+1 = 𝛽𝑣𝑘 − 𝜂∇𝐿(𝑥𝑘 + 𝛽𝑣𝑘 ), (5)

𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑘+1, (6)

where 𝛽 is the momentum coefficient and 𝑣𝑘 is the velocity
term.

Fig. 5. Reconstruction methods on a scale from classical optimization to
deep learning-based approaches [Antipa et al. 2018].

(4) Alternating Direction Method of Multipliers (ADMM):
ADMM solves the following optimization problem:

min
𝑥,𝑣

1
2 ∥𝑏 − 𝐻𝑣 ∥22 + 𝜆𝑅(𝑥), s.t. 𝑣 = 𝑥 . (7)

The iterative updates are:

𝑥𝑘+1 = argmin
𝑥

𝜆𝑅(𝑥) + 𝜌

2 ∥𝑥 − 𝑣𝑘 + 𝑢𝑘 ∥22, (8)

𝑣𝑘+1 = argmin
𝑣

1
2 ∥𝑏 − 𝐻𝑣 ∥22 +

𝜌

2 ∥𝑥
𝑘+1 − 𝑣 + 𝑢𝑘 ∥22,

(9)

𝑢𝑘+1 = 𝑢𝑘 + 𝑥𝑘+1 − 𝑣𝑘+1 . (10)

(5) Plug-and-PlayADMM(PnP-ADMM): PnP-ADMMreplaces
the regularization step with a pre-trained denoiser 𝐷 (·):

𝑥𝑘+1 = 𝐷 (𝑣𝑘 − 𝑢𝑘 ), (11)

𝑣𝑘+1 = argmin
𝑣

1
2 ∥𝑏 − 𝐻𝑣 ∥22 +

𝜌

2 ∥𝑥
𝑘+1 − 𝑣 + 𝑢𝑘 ∥22,

(12)

𝑢𝑘+1 = 𝑢𝑘 + 𝑥𝑘+1 − 𝑣𝑘+1 . (13)

(6) Learned ADMM (Le-ADMM): Le-ADMM unrolls ADMM
into a neural network with learned parameters:
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𝑥𝑘+1 = prox𝜆𝑘 (𝑥
𝑘 − 𝜂𝑘∇𝐿(𝑥𝑘 )), (14)

𝑣𝑘+1 = argmin
𝑣

1
2 ∥𝑏 − 𝐻𝑣 ∥22 +

𝜌𝑘

2 ∥𝑥𝑘+1 − 𝑣 + 𝑢𝑘 ∥22,
(15)

𝑢𝑘+1 = 𝑢𝑘 + 𝑥𝑘+1 − 𝑣𝑘+1 . (16)

Le-ADMM-U extends this by integrating a U-Net denoiser for
further refinement.

3.3 Hyperparmeter Tuning
Hyperparameter tuning plays a critical role in achieving optimal
performance for each reconstruction method. In this section, we de-
scribe the hyperparameters we tuned, their effects on the algorithms,
and the selected default values for our experiments.
Color Notation: Red is used to highlight the default hyperpa-

rameter values chosen for our experiments.

(1) Gradient Descent (GD):
• Iterations (n_iter): 100, 300, 500 Controls how long the
optimization runs. A larger number of iterations allows the
gradient updates to converge more accurately but increases
computational time.

(2) Nesterov Accelerated Gradient Descent (GD-Nesterov):
• Momentum (𝜇): 0.5, 0.9, 0.99 The momentum parameter
incorporates the history of gradients to accelerate conver-
gence in directions with consistent gradients while damp-
ening oscillations in noisy directions.
– Higher 𝜇: Faster convergence but risks instability when
combined with a large learning rate.

– Lower 𝜇: Slower but more stable updates.
(3) GD-FISTA (Fast Iterative Shrinkage-Thresholding Algo-

rithm):
• Momentum (𝑡𝑘 ): 1 The momentum parameter 𝑡𝑘 acceler-
ates convergence in FISTA.
– Smaller 𝑡𝑘 : Slower early acceleration but more stable,
suitable for poorly conditioned problems.

– Larger 𝑡𝑘 : Faster early convergence but may lead to
instability for non-smooth problems.

(4) Alternating Direction Method of Multipliers (ADMM):
• Iterations (n_iter): 5, 10, 20 Controls how many times
ADMM alternates between primal and dual updates. Simi-
lar to GD, more iterations improve accuracy but increase
runtime.

• Step Sizes (𝜇1, 𝜇2, 𝜇3): 𝜇1: 1e-7, 1e-6, 1e-5; 𝜇2: 1e-5; 𝜇3: 4e-5
Step sizes balance data fidelity, regularization, and con-
straint enforcement.
– Small 𝜇: Slower convergence but more stable updates.
– Large 𝜇: Faster convergence but risks instability.

• TV Regularization Strength (𝜏): 1e-4, 1e-3, 1e-2 𝜏 con-
trols the strength of Total Variation (TV) regularization for
sparsity:
– Small 𝜏 : Weak regularization, retaining texture details
but allowing noise.

– Large 𝜏 : Strong regularization, suppressing noise but
potentially over-smoothing fine details.

(5) Plug-and-Play ADMM (PnP-ADMM):
• Denoiser: DRUNET (pre-trained) The primary hyperpa-
rameter for PnP-ADMM is the choice of the denoiser. We
use DRUNET, a deep pre-trained denoiser, to enforce real-
istic image priors during the ADMM updates.

(6) Learned ADMM (Le-ADMM):
• Unrolled Iterations: 10 Le-ADMM employs unrolling,
where each iteration corresponds to a fixed layer in a neu-
ral network. The number of unrolled iterations balances
reconstruction accuracy and computational cost.

• Regularizer Network: U-Net (UNet-ADMM10-UNet) The
regularizer 𝑁 is a small U-Net consisting of a single encod-
ing and decoding step. Increasing the U-Net size improves
the reconstruction quality but requires more computational
resources and training data.

4 EVALUATION RESULTS

4.1 Evaluation Metrics
To quantitatively compare the performance of different reconstruc-
tion models, we primarily focus on 3 evaluation metrics:

(1) PSNR: Peak Signal-to-Noise Ratio
(2) LPIPS: Learned Perceptual Image Patch Similarity
(3) Processing Time: inference time in seconds per image

𝑃𝑆𝑁𝑅 metric is formally defined as: 𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10
(

𝑅2
𝑀𝑆𝐸

)
,

where𝑅 = 255 is the maximum pixel value possible in the image, and
𝑀𝑆𝐸 is the mean-squared-error between the reconstructed image
𝐼𝑟𝑒𝑐𝑜𝑛 and the ground-truth image 𝐼𝑔𝑡 :

𝑀𝑆𝐸 = 1
𝑀×𝑁

∑𝑀
𝑖=1

∑𝑁
𝑗=1 (𝐼𝑔𝑡 (𝑖, 𝑗) − 𝐼𝑟𝑒𝑐𝑜𝑛 (𝑖, 𝑗))2

On the other hand, the 𝐿𝑃𝐼𝑃𝑆 metric measures the perceptual
difference between two images by considering the feature extracted
from a pre-trained CNN in latent space instead of direct raw pixel-
wise differences. The formal definition of 𝐿𝑃𝐼𝑃𝑆 is:

𝐿𝑃𝐼𝑃𝑆 = 𝑀𝑆𝐸 (𝑓𝐶𝑁𝑁 (𝐼𝑔𝑡 ), 𝑓𝐶𝑁𝑁 (𝐼𝑟𝑒𝑐𝑜𝑛))
where 𝑓𝐶𝑁𝑁 denotes the CNN’s feature extractor, such as anAlexNet
[Krizhevsky et al. 2012], ResNet [He et al. 2016] or VGG [Simonyan
and Zisserman 2015] model. In our evaluation, the CNN feature
extractor is pre-trained AlexNet, which is also the default option.
Finally, the processing time is computed by averaging the total

time required for each model to reconstruct each image over 900
test images, measured in seconds per image.

4.2 Quantitative Results
In this section, we present the quantitative evaluation of different
reconstruction algorithms in Table 1. All our experiments during
the inference process were executed on CPU-only machines without
GPUs to mimic the computational resources available in a camera.
In the table, * denotes the best performance across all models.
Experimental results show that the Le-ADMM model signifi-

cantly outperforms all other methods on both evaluation metrics.
Le-ADMM achieves the highest PSNR of 26.1, which is nearly
2× higher than PnP-ADMM’s second-highest PSNR of 14.3, and
the lowest LPIPS of 0.077, which is more than 5× lower than
ADMM’s second-best LPIPS of 0.405. Despite having significantly
better performance over other methods, Le-ADMM also has efficient
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Ground Truth GD Vanilla GD Nesterov GD FISTA ADMM Le-ADMM

Fig. 6. Comparison of reconstructions between different reconstruction algorithms.

Table 1. Quantitative Results for Different Reconstruction Algorithms

Algorithm PSNR ↑ LPIPS ↓ Time (sec/image)
Vanilla GD 13.2 0.499 2.079
Nesterov GD 12.2 0.457 1.408
GD-FISTA 12.0 0.451 0.904*
ADMM 13.3 0.405 1.05
PnP-ADMM 14.3 0.470 86.12
Le-ADMM 26.1* 0.077* 1.72

inference runtime, needing only 1.72 seconds/image compared to
PnP-ADMM’s 86.12 seconds/image, which is 50× more computa-
tionally efficient.

4.3 Qualitative Results
To provide visual comparisons of the reconstruction quality be-
tween different reconstruction algorithms, we conducted qualitative
comparisons between different models in Figure 6. We observe that
most algorithms (Vanilla GD, GD Nesterov, GD FISTA, ADMM, PnP-
ADMM) successfully manage to reconstruct the overall structures
and high-level shapes in the ground-truth images but fail to produce
the high-frequency details (blurry small details) and true color space
distributions (greenish, dark tone). Furthermore, their reconstructed
images often include high levels of noise such as horizontal stripes,

which significantly degrade the image reconstruction quality. Most
notably, for some images, such as the flower pattern image (4𝑡ℎ row
and the berry cake 6𝑡ℎ row, most algorithms completely generated
high levels of noise that make the quality of reconstructed images
extremely poor. However, when using UNets as the pre-and-post-
processing models, Le-ADMM is able to reconstruct images with
impressive high quality in terms of overall structures, perceptual
quality, high-frequency details, and color space distributions. Our
qualitative evaluations show that the Le-ADMM method has almost
identical visual quality to the ground-truth images, proving it to
be a most promising algorithm for image reconstruction in lensless
camera imaging.

5 DISCUSSION
Our experiments and evaluations highlight the trade-offs between
speed and reconstruction quality between different reconstruction
models. While traditional methods like GD (Vanilla, Nesterove,
FISTA) are generally computationally inexpensive, their perfor-
mances significantly lag behind more advanced techniques like
Le-ADMM. The integration of deep learning priors further enhances
image quality, as demonstrated by PnP-ADMM. We observe that
while Le-ADMM has impressive performance both quantitatively
and qualitatively compared to other algorithms, they are also highly
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Fig. 7. Prototype development of a lensless camera based on the DiffuserCam design [Antipa et al. 2018] using a Raspberry Pi. Left: Original Raspberry Pi
Camera Module v2 (front and side views). Middle: Camera with lens and mounting platform removed, exposing the imaging sensor (front and side views).
Right: Current prototype with a Scotch tape diffuser mask over the imaging sensor and the mounting platform.

computationally efficient, only requiring marginally more process-
ing time compared to GD methods. The high performance of Le-
ADMM can be explained by its high expressive power that allows
it to learn highly complex representations of the inverse mapping.
Although the training process of Le-ADMM is computationally de-
manding and time-consuming, once it converges, the model can
be applied efficiently to reconstruct the true image from raw lens-
less measurements, explaining its high inference efficiency. On the
contrary, PnP-ADMM solves the optimization problem during the in-
ference process by iteratively updating the primal and dual variables
with some denoising priors. This on-the-fly optimization requires
more iterations and is computationally expensive, which leads to
slow inference time.
However, Le-ADMM does not come without drawbacks. Since

Le-ADMM is a learning-based method, it requires datasets with a
large amount of high-quality samples in order to learn accurate
reconstruction functions. However, in many application domains
such as medical imaging and underwater imaging, such high-quality
datasets may not be publicly available and are expensive to collect.
Furthermore, like any learning-based algorithms, Le-ADMM cannot
generalize to reconstruct images captured by a lensless camera with
different settings, designs, and PSF, limiting its usability to only the
DiffuserCam.

6 CONCLUSION
In this paper, we benchmark reconstruction algorithms for lensless
imaging, focusing on the trade-offs between computational effi-
ciency and reconstruction quality. Using the DiffuserCam dataset,
we evaluated traditional optimization techniques and deep learning-
enhanced hybrid methods, identifying Learned ADMM as a decent
approach for achieving real-time reconstructionwith balanced speed

and quality. However, as a hybrid model, it requires some training
data and pre-trained priors. The runner-ups, based on our observa-
tions, are fine-tuned GD-FISTA or ADMM, which come with trade-
offs such as certain artifacts but offer acceptable reconstruction
quality and fast inference speed. Our analysis highlights the poten-
tial for deploying lensless imaging systems in resource-constrained
applications.

A limitation of our study is that all of our evaluations and results
were based on the DiffuserCam dataset, which represents a specific
lensless imaging setup. Therefore, the generalizability of our find-
ings regarding the optimized algorithms to other lensless imaging
systems or datasets remains uncertain. Future work will address this
limitation by benchmarking across various lensless imaging systems
and datasets to evaluate performance under diverse conditions.

To better support the benchmark study, we initiated the develop-
ment of our own lensless camera prototype based on DiffuserCam
and Raspberry Pi. Figure 7 illustrates the timeline of this process.
On the left is the original Raspberry Pi camera module v2 with
its lens and side view. In the middle is the camera module with
the lens and mounting platform removed, along with its side view,
showing a significant decrease in size. On the right is the current
build with a scotch tape diffuser mask, but without the mounting
platform. Removing the mounting platform posed challenges, as it
broke the circuits and caused the camera to stop functioning. Despite
hardware malfunctions and resource limitations, this prototyping
process provided valuable insights. Platforms like LenslessPiCam
offered helpful guidelines and scripts for setting up and evaluating
lensless imaging pipelines.
Future work will focus on continuing to extend the prototype

and setting up an on-device reconstruction pipeline. The next step,
based on our current prototype, is to measure and calibrate the
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Point Spread Function (PSF), despite the limitation of the mounting
platform preventing the diffuser mask from being placed closer
to the imaging sensor. Once the PSF is accurately measured, we
can capture our own custom DiffuserCam datasets. Specifically,
we aim to focus on in-the-wild scene capture, challenging existing
algorithms to handle diverse conditions. This effort seeks to advance
the applicability of lensless imaging systems and bridge the gap
between research prototypes and real-world deployment.
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• Zijie Cai: Fine-tuned and collected experimental results for
Gradient Descent (GD), GD-FISTA, GD-Nesterov, ADMM,
and PnP-ADMM algorithms using the DiffuserCam dataset.
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lensless camera prototype. Organized and managed project
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mental results for Le-ADMM using U-Nets as pre-and-post-
processing modules. Downloaded and implemented imple-
mentations around the DiffuserCam dataset for training and
evaluations of lensless imaging reconstruction models. Exper-
imented with different settings and variants of the Le-ADMM
algorithm to select the best-performing model for the report. I
was responsible for writing the Experimental Results section
(Quantitative and Qualitative Evaluations), detailed analysis,
parts of Dataset Section and Discussion Section. Also proof-
read the writing to fix minor issues and improve clarity of
the manuscript.
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detailed explanations of the reconstruction algorithms (Gradi-
ent Descent, Nesterov GD, GD-FISTA, ADMM, PnP-ADMM,
and Le-ADMM) with formal updates and descriptions. Au-
thored the Hyperparameter Tuning section, ensuring clear
presentation of default values and their impact on algorithm
performance. Conducted hyperparameter tuning for evalu-
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